

Reusable Arm Computational Chiplet with 128bit Shared Global Address Space Access

Professor John Goodacre
University of Manchester
12 July 2019

EURO EXA Intro to key terms

Compute Unit: The new processing building block

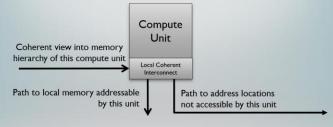
Chiplet: Silicon module that implements a Compute Unit

Unimem: The interconnect rules between Compute Units

This talk: delivering something that is all of the above

Compute Units: circa 2013

13th International Forum on Embedded MPSoC and Multicore
July 15-19, 2013, Otsu, Japan

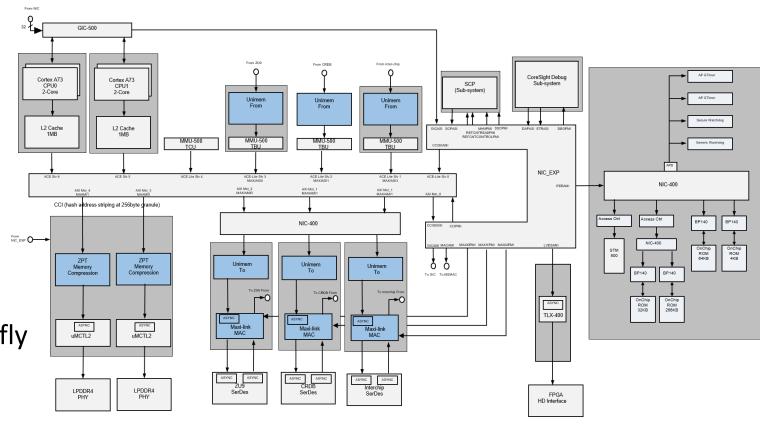

NEW Slides now available

PSoC'13 will be held on July 15-19, 2013 at <u>Biwako Hotel</u>

Logical Structure of a Compute Unit

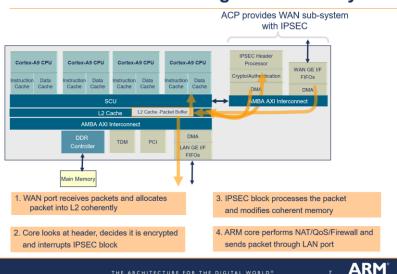
- Unit can include any number of compute resources
 - Potentially both general purpose and other local accelerators
- Provides coherent and symmetric access across local resources
 - Enabling a SMP capable operating system and resource sharing
- Each Compute Unit is assigned a partition within a system's global address space (GAS)
 - Any unit can coherently access any location in the GAS
 - DMA can master transfer between units

The Architecture for the Digital World* ARM


- Introduced the concept of the Compute Unit
 - Encapsulating a local interconnect and devices
 - Providing the model to link to other units
- The base for the EU FP7 project EuroServer
 - Compute Units implemented as chiplet
 - Multiple chiplets within a package
 - Global address space was a partition of local space
 - Further work across two more generations of H2020 projects

EuroExa Compute Unit Chiplet

- 4x Cortex A-73 CPUs
 - 1.6 GHz
 - 64 L1 Caches
 - 2MB L2 Caches
 - 8 GB LPDDR4 DRAM
 - 3 MAXILINK Interfaces:
 - 64Gbps ZU9-EG Link
 - 64Gbps VU9 Link (via Firefly)
 - 64Gbps ASIC2ASIC Link (via Firefly
- H/W Support for UNIMEM via bridging devices

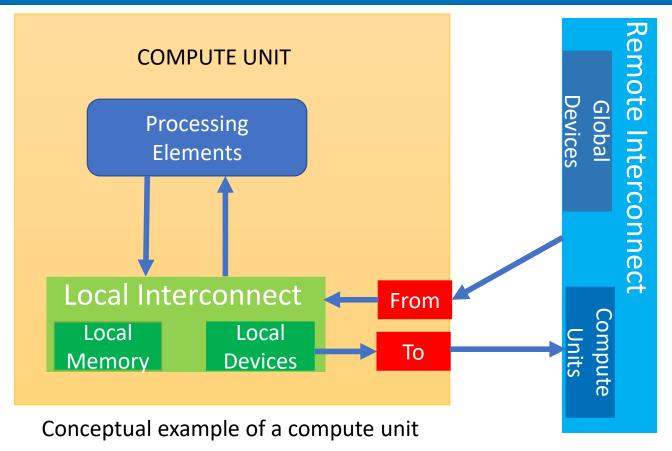


Pre-Unimem: circa 2008

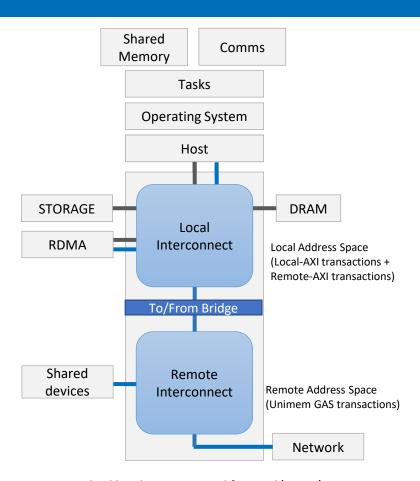
8th International Forum on Application-Specific Multi-Processor SoC 23 - 27 June 2008, Aachen, Germany

IPSEC Acceleration Using I/O Coherency

- Introduced the idea of dual interconnects interacting through a single sided coherence scheme
 - "Bridging" was integrated into the CPU (A9's ACP)
 - There was no translation between the two address spaces
- The ACP "almost coherent port" (thanks Xilinx!)
 - Became key capability of future Arm interconnects
 - Made the A9 effectively the first Compute Unit
 - (and made the Xylinx Zynq great for prototyping)


ExaNest Node (quad units

Formalising the Compute Unit


- A compute unit is defined by :
 - Zero of more of Processing Elements (masters that can access Unimem)
 - A local address maps containing
 - Zero or more other masters
 - Zero or more of Devices (slaves)
 - One or more memory regions (Slaves in the bigger address map)
 - A (to remote) Bridging Device to map the local addressed transaction into a remote addressed transaction
 - A (from remote) Bridging device able to map a Remote Address transactions into a local address transaction coherently
- A Unimem System consists of multiple addressable Compute Units
- The remote address space include
 - One or more compute units
 - Zero or more devices (slaves)
- Remote (Unimem) address are identified by a Global Address (GA), consisting of
 - A Global Virtual Address (GVA) within a Global Virtual Address Space (GVAS)
 - a set of progressive coordinates to locate the compute unit owning the GVA
 - a context to provide allocation and security isolation between units accessing regions within the GVAS (protection domain)

Current implementation

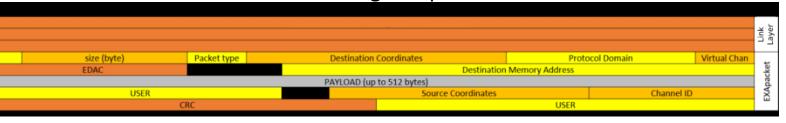
- A processing node (of any size and complexity), that exposes a Unimem bridge is known as a Compute Unit
- Introduces an additional "global" remote address space that can be addressed natively by hardware level r/w transactions
 - Only the data-owner can cache globally shared memory (data locality)
 - Enables nodes to read/write data coherently with the data-owner
 - Provides native hardware level one-sided (read/write/atomic) communication
- Apps can use RDMA to generate both local and remote transactions (prototyped API exposed by ExaNode/ExaNeSt/EuroExa)
 - Block move data between local address space and remote address space
- EuroExa adds support for CPU to natively generate remote transactions
 - Hence apps can also natively access remote address space

Global Address Encoding

	Component/Field	Width	Comment
Global Virtual Address 64 bits)	Offset	30	1GB page sizes
	Page within 48 bit GVAS	18	2^18 256TB of memory per context
	Address Extension (AE)	16	Meaning defined by AE Use field
(used for interconnect routing)	L1: A specific Bridge within a Node	2	4 (2 SoCs, 2 FPGAs)
	L2: Which Node within a quadrant	2	4 Nodes per quadrant
	L3: Which quadrant on a blade	2	4 Quads per blade
	L4: Which blade in a NetGroup	2	4 blades per netgroup
	L5: Which netgroup in a rack	3	8 Net-groups per rack
	L6: Which rack within a rackgroup	3	8 racks per rackgroup
	L7: Which rackgroup in a System	2	4 rackgroups per system (rows of containers)
User bits	Context	16	bridge to bridge defined meaning
			0 means 48 bit GVA and location bit (AE unused)
			1 means full 64 bit GVA
			2 means "FORTH encoding in AE" (loc. Bits unused)
	Encoding Versioning	4	3-15 RFU
			Eg atomics within a specific context
	Operation	4	0 = r/w, 1 = mailbox, 2 = stream, 3 =- lock, etc
	Reserved for Future Use	8	more locations, or bridges within a nodes etc
	Total	128	One day maybe the native of scheme for a PE!

EURO EXA Unimem Bridges Unimem Bridges

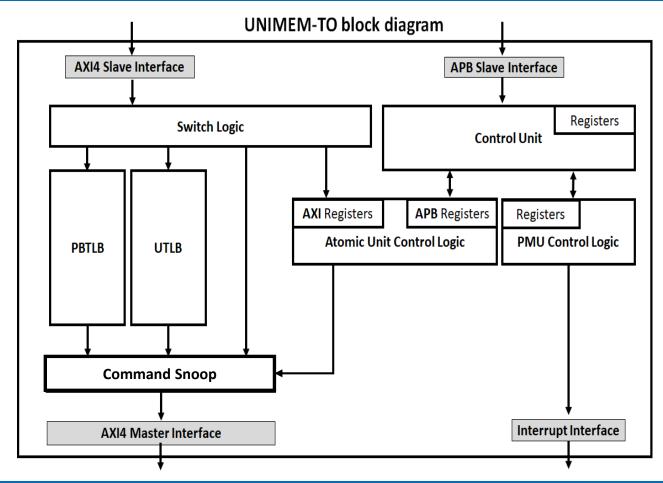
- Each Compute Unit interfaces with the Unimem System via a *Bridges*
- Bridges perform two roles:
 - Address Translation
 - Local to Global
 - Exanet Communication
 - Exanet Packet Assembly and Disassembly
- Bridges can also be used to directly interface with rDMAs and implement operations directly in H/W
 - E.g. Atomic Operations, Stream transactions,



EUROEXA > Unimem-To Bridge

- Translates local virtual-addresses to global Unimem addresses
- Generates Exanet Packets* for a range of operations:
 - Native Load/Store AXI Transactions
 - Command Blocks that are used to create custom operations:
 - Atomics, Fetch and Add etc
 - Interacts with rDMA to perform large memory operations

*Exanet Packet: over the wire encoding and protocol for Unimem

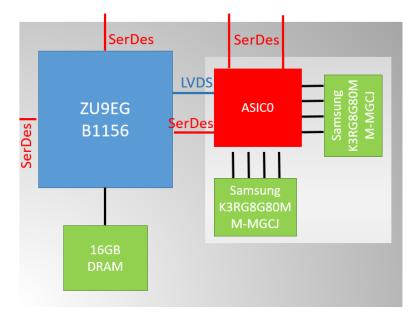


EUROEXA CPU native UNIMEM-To bridge

- Maps ARMv8 physical addresses to **UNIMEM Global Addresses**
 - O/S Maps Global UNIMEM pages to a separate 40bit Physical Address Space
- Module Contains two Address **Translation Caches**
 - Unimem TLB (UTLB).
 - Page Borrowing TLB (PBTLB).
 - Support for 4K, 2MB, 1GB pages.
- Supports address translation for atomic accesses and custom ops via local "Command Block"

EUROEXA ASIC Native Unimem-From Bridge

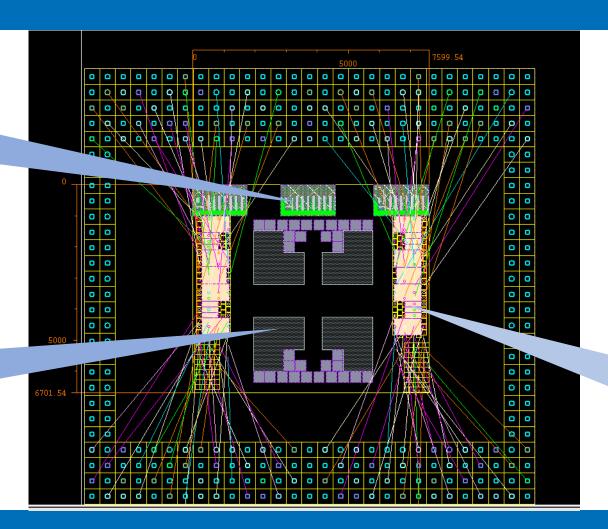
- Disassembles Exanet Packets
- Translates Global Physical Addresses to Local Virtual Addresses
- Can initiate Local Memory-Reads and Writes
- Interacts with Custom Hardware (e.g. rDMA) to perform complex operations
- Generates interrupts for S/W callback functions for operations not handled by hardware



Compute near memory Package

- EuroEXA Compute Unit ASIC:
 - High-end Energy-Efficient Arm CPU
 - Native support for UNIMEM Global Addressing
 - Novel Memory Compression
- Networking and RDMA/UNIMEM resources provided via Xilinx Zynq FPGAs
- Accelerator resources provided by Xilinx VU9s
- UNIMEM Capabilities shared between ASIC and FPGA
- Supports novel DRAM inline compress scheme
 - See EuroExa partner https://wp.zptcorp.com/

Stacked DRAM
Native Compute Unit ASIC
Low cost, low
pin count package



Package over die on substrate

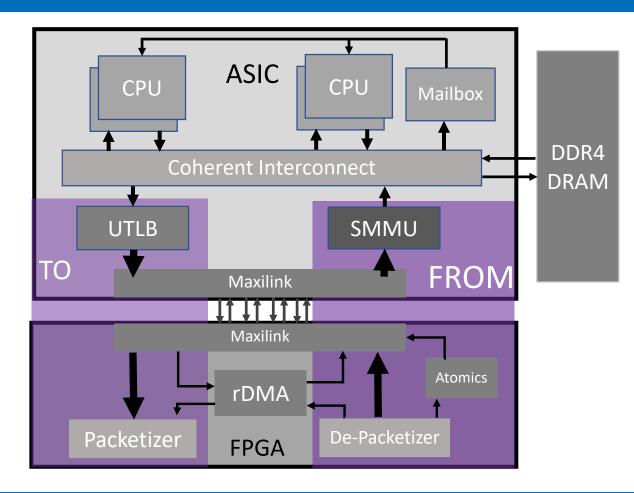
SerDes
Used for Unitmem
To/From bridges

Arm Cortex A7x
Arm interconnect
providing required
Coherence

HBM was too expensive

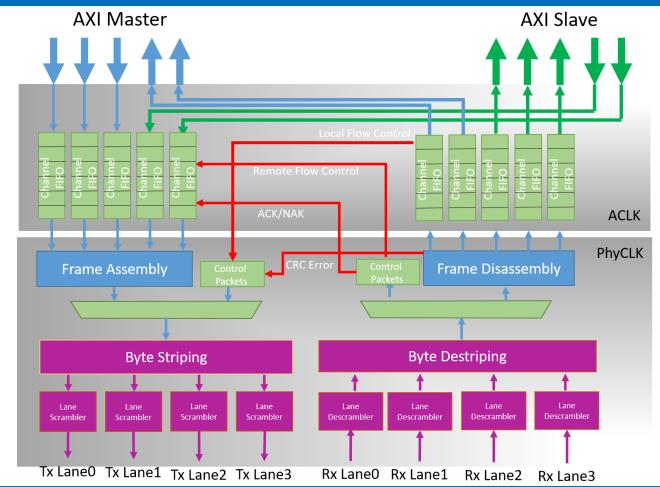
Only ASIC/PHY pins required, memory interconnect is in package

Using PoP DRAM directly on ASIC package substrate


4 x channels of LPDDR4
Connected within package

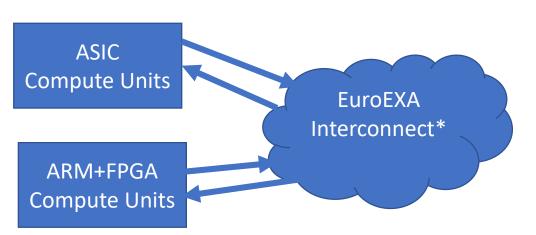
EuroEXA Implementation

- Bridges Split Between ASIC and FPGA
- Address Translation on ASIC
 - Exploits Memory-Management H/W
 - Fast: TLBs, PTW
 - Secure: Protected Access
- Exanet Communication on FPGA
 - Allows H/W to be prototyped easily
- Custom High Speed Link in-between
 - Maxilink: AXI serialised encoding of both local interconnect and remote unimem transactions

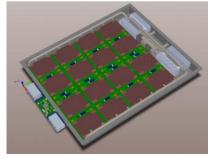


MAXI-LINK MAC

- Low Latency AXI Interconnect
- Serializes Master and Slave interface channels over Serdes
 - 16Gbps per Channel
- In-place Frame Buffers
- Two-stage Synchronization Handshake
 - Error-based Resync
- CRC Error detection and retransmission
- Per-channel Flow Control
- Clock-Correction


100's of compute units

1,000,000's of FPGA DSP slices


1,000's of Tera (INT8) OP/s

1000's of CPU cores

Testbed deployment

800 Gb/s per 1 rack unit 16 compute units per 1U Deploying 2 cabinets Using modular containers Liquid cooled

- Deploying at STFC in UK
- Less than 2 yrs until operateration / demos

*Paper461: Design Exploration of Multi-tier interconnects for Exascale systems ICPP 2019, 48th International Conference on Parallel Processing August 5-8, 2019, Kyoto Research Park, Kyoto, Japan

Many Thanks

www.euroexa.eu

